Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1)x + C(2)x^(...

If `(1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2)`
` + C_(3) x^(3) + C_(4) x^(4) + ...,` find the values of
(i) `C_(0) - C_(2) + C_(4) - C_(6) + …`
(ii) `C_(1) - C_(3) + C_(5) - C_(7) + …`
(iii) `C_(0) + C_(3) + C_(6) + …`

Text Solution

Verified by Experts

`because (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + C_(4) x^(4) + C_(5) x^(5) + …`
Putting x = I where ` I = sqrt(1 - ), ` then
` (1 + i)^(n) = C_(0) + C_(1)I + C_(2) i^(2) + C_(3)i^(3) + C_(4) i^(4) + C_(5)i^(5) + …`
` = (C_(0) - C_(2) + C_(4) - ...) + i (C_(1) - C_(3) + C_(5)- ...) `...(i)
Also , `(1 + i)^(n) = [ sqrt(2) ((1)/(sqrt(2)) + (i)/(sqrt(2)))]^(n)`
` = 2^(n//2) ("cos" (pi)/(4) + "i sin " (pi)/(4))^(n) `
` = 2^(n//2) ("cos" (npi)/(4) + "i sin " (npi)/(4))` ...(ii)
From Eqs. (i) and (ii) , we get
`(C_(0) - C_(2) + C_(4)-...) + i (C_(1) - C_(3) + C_(3)-...) `
`= ^(n//2) "cos" ((npi)/(4)) + i * 2 ^(n//2) " sin "((npi)/(4))`
On comparing real and imaginary parts , we get
` C_(0) - C_(2) +C_(4) - ...= 2^(n//2) cos ((npi)/(4) )`
` C_(1) - C_(3) + C_(5) - ...=2^(n//2) "sin " ((npi)/(4))`
We have , ` (1 + x)^(n) = C_(0) + C_(1) x+C_(2) x^(2) + C_(3) x^(3) + C_(4)x^(4) + C_(5)x^(5) + C_(6)x^(6) + ...`
Putting ` x = 1 omega , omega^(2)` (cube roots of unity) and adding , we get
`3(C_(0) + C_(3) + C_(6) + ...)= 2^(n) + (-omega)^(n) + (1 + omega^(2))^(n) `
` n^(2) + (-omega^(2))^(n) = 2^(n) + (-1)^(n) (omega)^(2n) + omega^(n))`
` = 2^(n) + (-1)^(n) {e^((4pi"in")/(3)) + e^((2pi"in")/(3))}`
` = 2^(n) + (-1)^(n) * e^(npii)* 2 cos ((npi)/(3))`
` = 2^(n) + (-1)^(n) * e^(n)* 2 cos ((npi)/(3))`
` = 2^(n) + (-1)^(2n) *2 cos ((npi)/(3)) = 2^(n) + 2 cos ((npi)/(3))`
` therefore C_(0) + C_(3) + C_(6) + ...= (1)/(3) {2^(n) +2 cos ((npi)/(3))}`
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leilt j le n)(sumsum)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1)x + C(2)x^(2) + C(3) x^(3) + C(4) x^(...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |