Home
Class 12
MATHS
If (1+ x)^(n) = C(0) + C(1) x + C(2)x^(2...

If `(1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n)` , prove that
` C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)`

Text Solution

Verified by Experts

Here , last term of `C_(1) + 2C_(2) + 3C_(3) + …+ nC_(n) "is " nC_(n) ` i.e., n
and n ` n= n *1 + 0 "or" n)n(1`
`{:(underline(n)),(underline(0)):}`
Here , q = 1 and r = 0
Then , the given series is
`(1 + x)^(n) = C_(0) + C_(1)x+C_(2) x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)`
Diiferentiating both sides w.r.t.x,we get
`n(1 + x)^(n-1) = 0+C_(1) + 2C_(2) + 3C_(3) x^(3) + ...+ nC_(n) x^(n-1)`
Putting x= 1 , we get
` n*2^(n-1) = C_(1) + 2C_(2) + 3C_(3) +...+ nC_(n)`
I . Aliter
` C_(1) + 2C_(2) + 3C_(3) + ...+ nC_(n)`
`= n+ 2.(n(n-1))/(1*2) + 3* (n(n-1)(n-2))/(1*2*3) + ...+ n*1`
`= n{1 + (n-1) + ((n-1)(n-2))/(1*2) + ...+ 1}`
Let n- 1 = N , then
LHS `= (1 + N) { 1+ N + (N(N -1))/(1*2) + ... + 1}`
` = (1 + N){1 +""^(N)C_(1) + ""^(N)C_(2) + ...+ ""^(N)C_(N) `
` = (1 + N)2^(N) = n*2^(2-1)` = RHS
II . Aliter
LHS = `C_(1) + 2C_(2) + 3 C_(3)+ ...+ nC_(n) = sum_(r=1)^(n) r* ""^(n)C_(r)`
`= n sum_(r=1)^(n)r.(n)/(r). ""^(n-1)C_(r-1)" "[ because ""^(n)C_(r)= (n)/(r). ""^(n-1)C_(r-1)]`
` n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n (""^(n-1)C_(0) + ""^(n+1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-2) + ...+ ""^(n-1)C_(n-1))`
`n*n^(n-1)` = RHS
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2))/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(6) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .

If (1 + x)^(n) = C_(0) + C_(1) x +C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1+ x)^(n) = C(0) + C(1) x + C(2)x^(2) + ...+ C(n)x^(n) , prove tha...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |