Home
Class 12
MATHS
Find the modulus of the complex number z...

Find the modulus of the complex number `z = -3 - i4`

Text Solution

Verified by Experts

Here . Last term of `1^(2) *C_(1) + 2^(2)*C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) ` is
` n^(2)*C_(n) " i.e.,n^(2)` . Linear factor of `n^(2)` are n and, [start
always with greater fector ] and last term with positive sign.
and `{:(n=n*1+0" or " " n)n(1"),(" "underline(-n)),(" "underline(0)):}`
Here ,q= 1 and r=0
Then ,the given series is
`(1+x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +C_(3)x^(3) + ...+ C_(n)x^(n)`
On differentiating both sides w.r.t.x, we get
`nx(1+x)^(n-1) = C_(1)+ 2C_(2)x + 3C_(3)x^(2) + ...+ n C_(n)x^(n-1) `...(i)
and in last , numberical is n` C_(n) ` i.e. , and power
`(1+x) "is" n-1`
Then ` {:(n=(n-1)*1+0" or " " n)n(1"),(" "underline(-+)),(" "underline(1)):}`
Here .q = 1 and r=1
Now , multiplying both sides by x in Eq .(i) , then
`nx (1+x)^(n-1) = C_(1)x+2C_(2)x^(2) + 3C_(2)x^(3) +...+n^(2)C_(n) x^(n-1)`
Differentiating on both sides w.r.t..x, we get
`n{x*(n-1)(1+x)^(n-2)+(1+x)^(n-1)*1}`
` = C_(1)*1+2^(2)C_(2)x + 3^(2)C_(3)x^(2) + ...+ n^(2)C_(n)x^(n-1)`
Putting x = 1 ,we get
`n{1*(n-1)*2^(n-2)+ 2^(n-1)} = 1^(2)*C_(1) + 2^(3) *C_(2) + 3^(2) *C_(3)+...+n^(2) *C_(n)`
or `1^(2) *C_(1) +2^(2) *C_(2) + 3^(2)*C_(3) +...+ n^(2) *C_(n) = n (n+1)2^(n-2)`
Aliter
`LHS = 1^(2) *C_(1) + 2^(2) *C_(2) + 3^(2)*C_(3) + ...+ n^(2) *C_(n)`
` sum_(r=1)^(n) r^(2)*""^(n)C_(r) = sum_(r=1)^(n) r^(2) *(n)/(r) (""^(n-1)C_(r-1)`
` [because ""^(n)C_(r) = (n)/(r) .""^(n-1)C_(r-1)]`
`= sum_(r=1)^(n) r*""^(n-1)C_(r-1) = n sum_(r=1)^(n) {(r-1)+1}*""^(n-1)C_(r-1)`
` = n sum_(r=1)^(n)(r-1)*""^(n-1)C_(r-1) +n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n sum_(r-1)^(n) (n-1)*""^(n-2)C_(r-2) + n sum_(r=1)^(n) ""^(n-3)C_(r-1)`
`= (n-1)sum_(r=1)^(n) ""^(n-2)C(r-2) + n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n(n-1)(0+""^(n-2)C_(0) + ""^(n-2)C_(1) + ""^(n-2)C_(2) + ...+ ""^(n-2)C_(n-2)) + n(""^(n-1)C_(0) +""^(n-1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-1))`
`= n(n-1) *2^(n-2) + n*2^(n-1) = n (n+1) 2^(n-2) = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of the complex number (2 + 3i)/(2 - 3i)

Modulus of complex number 3i-4 is :

Find the modulus of the following complex numbers: (3-4i)/(4-31)

Find the modulus of the following complex numbers: (2+3i)^2/(1-3i)

Find the modulus and argument of the complex number (1+2 i)/(1- 3i)

Find te sum and product of the complex numbers z_1=-sqrt3+sqrt-2 , z_2=2sqrt3-i .

Find the difference of the complex numbers : z_1=- 3 + 2i and z_2= 13-i .

Find the additive inverse of the complex number : -5 + 7i .

Find the conjugate and modules of complex number 7 -24i.

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the modulus of the complex number z = -3 - i4

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |