Home
Class 12
MATHS
If (1+x)^n=c0+C1x+C2x^2++Cn x^n , using ...

If `(1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t` `C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0`

Text Solution

Verified by Experts

Numerical value of last term of
` C_(1) - 2C_(2) + 3C_(3) -…+(-1)^(n-1)nC_(n)` i.e.,n then
and `{:(n = n*1 + 0 "or " "n)n(1"),(" "underline(-n)),(" "underline(1)):}`
Here ,q = 1 and r = 0
The given series is
` (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)`
On diferentiating both sides w.r.t.x, we get
` n(1 + x)^(n-1) = 0 = C_(1) + 2C_(2) x + 3C_(3)x^(2) + ...+ nC_(n) x^(n-1)`
Putting x = -1 , we get
` 0= C_(1) - 2C_(2) + 3C_(3) - ...+ (-1)^(n-1) nC_(n)`
or ` C_(1) - 2C_(2) + 3C_(3)- ...+ (-1)^(n-1) nC_(n) = 0 `
I . Aliter
` LHS = C_(1) - 2C_(2) + 3C_(3) - ...+ (-1)^(n-1) n*C_(n) `
`= n-2*(n(n-1))/(1*2) + 3(n(n-1)(n-2))/(1*2*3) - ...+ (-1)^(n-1)*n*1`
`= n{1- ((n-1))/(1)+ ((n-1)(n-2))/(1*2)- ...+ (-1)^(n-1)}`
In bracket ,put n-1 = N , then
`LHS= n{1- (N)/(1)+ (N(N-1))/(1*2) - ...+ (-1)^(N)}`
` = n{""^(N)C_(0) - ""^(N)C_(1) + ""^(N)C_(2) -...+ (-1)^(N) ""^(N)C_(N) }`
` = n (n-1)^(N) = 0 = RHS `
II. Aliter
`LHS = C_(1) - 2C_(2) + 3C_(3) - ...+ (-1)^(n-1) *n C_(n)`
` = sum_(r=1)^(n) (-1)^(r-1)* r*""^(n)C_(r)`
` = sum_(r=1)^(n) (-1)^(r-1)* n*""^(n-1)C_(r-1)" "[because ""^(n)C_(r) = (n)/(r) * ""^(n-1)C_(r-1)]`
` = n sum_(r=1)^(n) (-1)^(r-1) *""^(n-1)C_(r-1)`
` n(1-1)^(n-1) = 0 = RHS ` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-2C_1+3C_2-.........+(-1)^n (n+1)C_n=0 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1+x)^n=c0+C1x+C2x^2++Cn x^n , using derivtives prove t h a t C1...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |