Home
Class 12
MATHS
Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^...

Prove that :`C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0`

Text Solution

Verified by Experts

The numberical value of last term of
` C_(n) - 3C_(1) + 5C_(2) - …+ (-1)^(n) (2n+1) C_(n) " is" (2n+1) C_(n)`
i.e. ` (2n+1)`
and `2n +1 = 2*n+1` or
` {:("n)(2n+ 1(2"),(" "underline(-2n)),(" "underline(1)):}`
Here , q = 2 and r = 1
The given series
` (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)` now ,
replacing by `x^(2)` , then we get
`(1 + x^(2))^(n) = C_(0) + C_(1)x^(2) + C_(2)x^(4) + ...+ C_(n) x^(2n)`
On multiplying both sides by x , we get
` x (1 + x^(2))^(n) = C_(0)x + C_(1)x^(3) + C_(2) x^(3) + C_(2) x^(5)+ ...+ C_(n) x^(2n +1)`
On differentiating both sides w.r.t.x, we get
` x*n (1 + x^(2)^(n-1) 2x + (1 + x^(2))^(n)*1 = C_(0) + 3C_(1) x^(2) + 5C_(2) x^(4) + ...+ (2n +1) C_(n) x^(2n)`
Putting x = i in both sides , we get
` 0 + 0 = C_(0) - 3C_(1) + 5C_(2) - ...+ (2n+1) (-1)^(n) C_(n)`
or ` C_(0)- 3 C_(1) + 5C_(2) - ...+ (-1)^(n) (2n+1) C_(n) = 0 `
I Aliter
` LHS = C_(0) - 3C_(1) + 5C_(2) - ...+ (2n+1) (-1)^(n) C_(n)`
`= C_(0) - (1 + 2) C_(1) + (1 + 4) C_(2) - ...+ (-1)^(n) (1 + 2n)C_(n)`
`= (C_(0) - C_(1) + C_(2) - ...+ (-1)^(n)C_(n)) - 2n(C_(1) - 2C_(2) + ...+ (-1)^(n-1) n*C_(n))`
` = (1-1)^(n) - 2 *0 " " ` [ from Example ]
= 0 = RHS
II. Aliter
` LHS = C_(0) - 3C_(1) + 5C_(2) -...+ (-1)^(n) (2n+1) C_(n)`
`= sum_(r=1)^(n)(-1)^(r) (2r+1)""^(n)C_(r) = sum_(r=1)^(n) (-1)^(r) [2r*""^(n)C_(r) + ""^(n)C_(r)]`
` = 2 sum_(r=1)^(n) *""^(n-1)C_(r-1)+ sum_(r=1)^(n) (-1)^(r) *""^(n)C_(r)` .
` = 2n (1-n)^(n-1) + (1 - 1)^(n) = 0 + 0 = 0 = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-2C_1+3C_2-.........+(-1)^n (n+1)C_n=0 .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |