Home
Class 12
MATHS
Prove that .^(n)C(0) + (.^(n)C(1))/(2) ...

Prove that `.^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1)`.

Text Solution

Verified by Experts

` because (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) dx " " [((1=x)^(n+1))/(n+1)]_(0)^(1)`
` rArr = [C_(0) x + (C_(1) x^(2))/(2) + (C_(2) x^(2))/(3) + ...+ (C_(n) x^(n+1))/(n+1)]_(0)^(1)`
` rArr C_(0) + (C_(1))/(2) + (C_(2))/(3) + ...+ (C_(n))/(n+1) = (2^(n+1)-1)/(n+1)`
or ` C_(0) + (C_(1))/(2) + (C_(2))/(3) + ...+ (C_(n))/(n+1) = (2^(n+1) -1)/(n+1)`
I .Aliter
` LHS = C_(0) + (C_(1))/(2) + (C_(2))/(3) + ...+ (C_(n))/(n+1)`
` = 1 + (n)/(1*2) + (n(n-1))/(1*2*3) + ...+ (1)/(n+1)`
` = (1)/(n+1) [(n+1) + ((n+1)n)/(1*2) + ((n+1)n(n-1))/(1*2*3) + ...+ 1]`
Put n + 1 = N , then
`LHS = (1)/(N) [N+ (N(N-1))/(2!) + (N(N-1)(N-2))/(1*2*3) + ...+ 1]`
` = (1)/(N) [ ""^(N)C_(1) + ""^(N)C_(2) + ""^(N)C_(3) + ...+ ""^(N)C_(N)]`
` = (1)/(N) [ (1 + 1)^(N)-1] = (2^(N)-1)/(N) = (2^(n+1) -1)/(n+1) = RHS`
II. Aliter
` LHS = C_(0) + (C_(1))/(2) + (C_(2))/(3) + ...+ (C_(n))/(n+1) = sum_(r=0)^(n) (C_(r))/(r+1)`
` = sum_(r=0)^(n)(""^(n)C_(r))/((r+1)) = sum_(r=0)^(n) (""^(n+1)C_(r+1))/((n+1)) [ because (""^(n+1)C_(r+1))/(n+1) = (""^(n)C_(r))/(r+1)]`
` = (1)/((n+1)) sum_(r=0)^(n) ""^(n+1)C_(r+1)`
` (1)/((n+1)) (""^(n+1)C_(1) + ""^(n+1)C_(2) + ""^(n+1)C_(3) + ...+""^(n+1)C_(n+1) `
` = (1)/(n+1) (2^(n+1)-1) = (n^(n+1) -1)/(n+1) = RHS ` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that n! (n+2)=n!+(n+1)! .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that .^(n)C(0) + (.^(n)C(1))/(2) + (.^(n)C(2))/(3) + "……" +(. ^...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |