Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3)`
` + ...+ C_(n)x^(n)` , prove that ` (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1)` .

Text Solution

Verified by Experts

We know that , from Example
`C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) + (C_(4))/(5) + (C_(5))/(6) + ...= (2^(n+1) -1)/(n+1)` ...(i)
and `C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) + (C_(4))/(5) + (C_(5))/(6) + ...= (1)/(n+1)` ...(ii)
On subtracting Eq.(ii) from Eq.(i) , we get
`2((C_(1))/(2) + (C_(3))/(4) - (C_(3))/(5)+ ...) = (2^(n+1) -2)/(n+1)`
On dividing each sides by 2, we get
`(C_(1))/(2) + (C_(3))/(4) - (C_(3))/(5)+ ... = (2^(n)-1)/(n+1)`
I. Aliter ` LHS = (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + ...`
` = (n)/(1*2) + (n(n-1)(n-2))/(1*2*3*4) `
` + (n(n-1)(n-2)(n-3)(n-4))/(1*2*3*4*5*6) + ...`
`= (1)/(n+1) [((n+1)n)/(1*2) + ((n+1)n(n-1)(n-2))/(1*2*3*4) + ((n+1)n(n-1)(n-2) (n-3)(n-4))/(1*2*3*4*5*6)+...]`
Put n+ 1 = N , then
`LHS = (1)/(N)[(N(N-1))/(2!)+ (N(N-1)(N-2)(N-3))/(4!)+ (N(N-1)(N-2)(N-3)(N-4)(N-5))/(6!)+...]`
`= (1)/(N) [""^(N)C_(2)+ ""^(N)C_(4) + ""^(N)C_(6)+ ...]`
`= (1)/(N)[(""^(N)C_(0) + ""^(N)C_(2) + ""^(N)C_(4)+ ""^(N)C_(6)+ ...)- ""^(N)C_(0)]`
` = (1)/(N) [ 2^(N-1) -1] = (2^(n)-1)/(n+1) = RHS`
II.Aliter
`LHS = (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + ...`
Case I If n is odd say ` n = 2m + 1 ,AA m iin W `, then
`LHS = sum_(r=1)^(m) (""^(2m+1)C_(2r+1))/(2r + 2) = sum_(r=0)^(m)(""^(2m+2)C_(2r+2))/(2m+2) " "[because (""^(2m+2)C_(2r+2))/(2m+1) = (""^(2m+1)C_(2r+1))/(2r + 2)]`
`= (1)/((2m+2)) (""^(2m+2)C_(2) + ""^(2m+2)C_(4) + ...+ ""^(2m+2)C_(2m +2))`
` = (1)/((2m+2)) * (2^(2m +2-1" _ "2m +1)C_(0)) = (2^(n) -1)/(n+1)" " [because 2m + 1 = n]` = RHS
Case II If n is even say ` n = 2m, AA m in N` , then
`LHS = sum_(r=0)^(m-1) (""^(2m )C_(2r +1))/((2r +2)) = sum_(r=0)^(m-1) (""^(2m+1 )C_(2r +2))/((2r +1))" " [because (""^(2m+1 )C_(2r +2))/(2m +1)= (""^(2m )C_(2r +1))/(2m +2)]`
`= (1)/((2m+1)) sum_(r=0)^(m-1) ""^(2m+1)C_(2r +2)`
`= (1)/((2m +1))(""^(2m+1)C_(2) + ""^(2m+1)C_(4) + ""^(2m+1)C_(6) + ...+""^(2m+1)C_(2n))`
`= (1)/((2m +1))*(2^(2m +1-1" - "2m+1)C_(0)) `
` (2^(n) -1)/(n+1) = RHS " " [ because n = 2 m] `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2))/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(6) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

If (1 + x)^(n) = C_(0) + C_(1) x +C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3)x^(3) + ...+ C(n)...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |