Home
Class 12
MATHS
Prove that C0Cr+C1 C(r+1)+ C2 C(r+2)+.....

Prove that `C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)`

Text Solution

Verified by Experts

i.e., ` r - 0 = r + 1 - 1 = r + 2 - 2 = …= n -(n-r) = r ` Given ,
` (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) + …+ C_(n-r) x^(n-r) + …+ C_(n) x^(n)` …(i)
Now ,
` (x + 1)^(n) = C_(0) x^(n) + C_(1) x^(n-1) + C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1) x^(n-r-1) + C_(r+2) x^(n-r-2) + ...C_(n)` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
` (1 +x)^(2n) = (C_(0) + C_(1) x + C_(2)x^(2) + ... + C_(n-r) x^(n-r) + ...+ C_(n) x^(n)) xx(C_(0) x^(n) + C_(1) x^(n-1)`
`+ C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1)x^(n-r-1)`
` + C_(r+2) x^(n-r-2) + ...+ C_(n))` ...(iii)
Now , coefficient of `x^(n-r)` on LHS of Eq .(iii) ` = ""^(2n)C_(n-r)`
` = (2n!)/((n-r)!(n+r)!)`
and coefficient of ` x^(n-r)` on RHS of Eq .(iii)
`= C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
But Eq.(iii) is an identity , therefore cefficient of ` x^(n-r)` in
RHS = coefficient of `x^(n-r)` in LHS
` rArr C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
` = (2n!)/((n-r)!(n+r)!)`
Aliter Given ,
` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(r+1) + C_(r + 2)x^(r+2) + ...+ C_(n-r) x^(r) + ...+ C_(n) x^(n) `...(i) Now , `(1+(1)/(x))^(n) = C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r))+ (C_(r +1))/(x^(r+1)) + (C_(r +2))/(x^(r+2))+ ...+ (C_(n-r))/(x^(n-r) ) +...+ (C_(n))/(x^(n))` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
`((1 +x)^(2n))/(x^(n)) = (C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(n-r) + ... + C_(n) x^(n))`
`xx(C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r)) + (C_(r +1))/(x^(r +1)) + (C_(r+2))/(x^(r +2)) + ...+ (C_(n-r))/(x^(n-r)) + ...+ (C_(n))/(x^(n)))`...(iii)
Now , coefficient of `(1)/(x^(r))` in RHS
`(C_(0) C_(r) + C_(1)C_(r+1) + C_(2) C_(r +2) + ...+ C_(n-r)C_(n))`
` therefore ` Coefficient of `(1)/(x^(r))` in LHS = Coefficient of ` x^(n-r) ` in
But Eq.(iii) is an identity , therefore ceofficients of `(1)/(x^(r))` in
` rArr C_(0) C_(r) + C_(1) C_(r +1) + C_(2) C_(r+2) + ...+ C_(n-r)C_(n)`
` = (2n!)/((n-r)(n+r)!)`
Corollary I For r = 0
` C_(0)^(2) + C_(1)x^(2) + C_(2) x^(2) + ...+ C_(n)^(2)= (2n!)/((n!)^(2))`
Corollary II for r = 1
`C_(0)C_(1) + C_(1) C_(2) + C_(2) C_(3) + ...+ C_(n-1) C_(n) =(2n!)/((n-1)!(n+1)!)` .
Corollary III For r = 2
`C_(0)C_(1) + C_(1) C_(3) + C_(2) C_(4) + ...+ C_(n-2) C_(n)= (2n!)/((n-2)!(n+2)!)` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that "^nC_r ^rC_5= ^nC_5 ^(n-5)C_(r-5) .

Find the coefficient of x^(n-r) in the expansion of (x+1)^n (1+x)^n . Deduce that C_0C_r+C_1C_(r-1)+......+C_(n-r) C_n= ((2n!))/((n+r)!(n-r)!) .

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : (1+C_1/C_0)(1+C_2/C_1)(1+C_3/C_2).... (1+C_n/ C_(n-1))=((n+1)^n)/(n!) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that C0Cr+C1 C(r+1)+ C2 C(r+2)+...............+c(n-r) Cn=((2n)!...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |