Home
Class 12
MATHS
If C(0) , C(1), C(2), …, C(n) are the b...

If ` C_(0) , C_(1), C_(2), …, C_(n)` are the binomial coefficients
in the expansion of ` (1 + x)^(n)` , prove that
`(C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1))`
`((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r))`.

Text Solution

Verified by Experts

`LHS = (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1))`
` prod _(r=1)^(n) (C_(r-1) +2 ""^(n)C_(r) + C_(r+1))`
` prod _(r=1)^(n) {(""^(n)C_(r-1) +""^(n)C_(r))+ (""^(n)C_(r)+ ""^(n)C_(r-1))}`
` prod _(r=1)^(n) (""^(n+1)C_(r-1) + ""^(n+1)C_(r+1))" "` [by Pascal's rule]
` prod _(r=1)^(n) (""^(n+2)C_(r-1) )= prod_(r=1)^(n) ((n+2)/(r+1)) ""^(n+1)C_(r)[because ""^(n)C_(r)= n/r*""^(n-1)C_(r-1)]`
` prod _(r=1)^(n) ((n+2)/(r+1))(""^(n+2)C_(r-1) )= prod_(r=1)^(n) ((n+2)/(r+1))prod_(r=1)^(n) (C_(r-1)+ C_(r))`
` = ((n+2))/(2) *((n+2))/(3) *((n+2))/(4) ...((n+2))/((n+1)) prod_(r=1)^(n) (C_(r-1) + C_(r))`
`((n+2)^(n))/((n+1)!) prod_(r=1)^(n) (C_(r-1) + C_(r))= RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)(r+1)(C_(r))

If C_1,C_2,C_3,C_4 are the coefficients of any four consecutive terms in the expansion of (1+ x)^n , prove that : C_1/(C_1+C_2)+C_3/(C_3+C_4)=(2C_2)/(C_2+C_3) .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If C_0,C_1,C_2,........, C_n denote the coefficients in the expansion of (1+ x)^n , then the value of : C_1+2C_2+3 C_3+..... +nC_n is :

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Find the coefficient of x^4 in the expansion of (1+x)^n (1-x)^n . Deduce that C_2=C_0C_4-C_1C_3+C_2C_2-C_3C_1+ C_4 C_0 .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

Find the coefficient of x^(n-r) in the expansion of (x+1)^n (1+x)^n . Deduce that C_0C_r+C_1C_(r-1)+......+C_(n-r) C_n= ((2n!))/((n+r)!(n-r)!) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If C(0) , C(1), C(2), …, C(n) are the binomial coefficients in the...

    Text Solution

    |

  2. The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30),...

    Text Solution

    |

  3. If the coefficient of the rth, (r+1)th and (r+2)th terms in the expans...

    Text Solution

    |

  4. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |

  7. The sum of series .^(20)C0-^(20)C1+^(20)C2-^(20)C3+....+^(20)C 10 is

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  10. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  11. Let S(1) = sum(j=1)^(10) j(j-1).""^(10)C(j), S(2) = sum(j=1)^(10)j."...

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is

    Text Solution

    |

  14. The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^(1...

    Text Solution

    |

  18. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0,...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |