Home
Class 12
MATHS
Let C1and C2 be two circles with C2 lyin...

Let `C_1`and `C_2` be two circles with `C_2` lying inside `C_1` A circle C lying inside `C_1` touches `C_1` internally and `C_2` externally. Identify the locus of the centre of C

Text Solution

Verified by Experts

The correct Answer is:
`:.` Locus of O is an ellipse with foci `O_(1)andO_(2)`.
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS|Exercise EXAMPLE|2 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 1|18 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos

Similar Questions

Explore conceptually related problems

A circle is given by x^2 + (y-1)^2 = 1 , another circle C touches it externally and also the x-axis, then the locus of its centre is :

C_1 and C_2 are two concentric circles, the radius of C_2 being twice that of C_1 . From a point P on C_2 , tangents PA and PB are drawn to C_1 . Prove that the centroid of the triangle PAB lies on C_1 .

t_(1),t_(2),t_(3) are lengths of tangents drawn from a point (h,k) to the circles x^(2)+y^(2)=4,x^(2)+y^(2)-4x=0andx^(2)+y^(2)-4y=0 respectively further, t_(1)^(4)=t_(2)^(2)" "t_(3)^(2)+16 . Locus of the point (h,k) consist of a straight line L_(1) and a circle C_(1) passing through origin. A circle C_(2) , which is equal to circle C_(1) is drawn touching the line L_(1) and the circle C_(1) externally. The distance between the centres of C_(1)andC_(2) is

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to

t_(1),t_(2),t_(3) are lengths of tangents drawn from a point (h,k) to the circles x^(2)+y^(2)=4,x^(2)+y^(2)-4x=0andx^(2)+y^(2)-4y=0 respectively further, t_(1)^(4)=t_(2)^(2)" "t_(3)^(2)+16 . Locus of the point (h,k) consist of a straight line L_(1) and a circle C_(1) passing through origin. A circle C_(2) , which is equal to circle C_(1) is drawn touching the line L_(1) and the circle C_(1) externally. Equation of C_(1) is

t_(1),t_(2),t_(3) are lengths of tangents drawn from a point (h,k) to the circles x^(2)+y^(2)=4,x^(2)+y^(2)-4=0andx^(2)+y^(2)-4y=0 respectively further, t_(1)^(4)=t_(2)^(2)" "t_(3)^(2)+16 . Locus of the point (h,k) consist of a straight line L_(1) and a circle C_(1) passing through origin. A circle C_(2) , which is equal to circle C_(1) is drawn touching the line L_(1) and the circle C_(1) externally. Equation of L_(1) is

The centres of two circles C_(1) and C_(2) each of unit radius are at a distance of 6 unit from each other. Let P be the mid-point of the line segment joining the centres of C_(1) and C_(2) and C be a circle touching circles C_(1) and C_(2) externally. If a common tangent to C_(1) and C passing through P is also a common tangent to C_(2) and C, then the radius of the circle C, is

Consider the two circles C_(1):x^(2)+y^(2)=a^(2)andC_(2):x^(2)+y^(2)=b^(2)(agtb) Let A be a fixed point on the circle C_(1) , say A(a,0) and B be a variable point on the circle C_(2) . The line BA meets the circle C_(2) again at C. 'O' being the origin. If (BC)^(2) is maximum, then the locus of the mid-piont of AB is

ABCD is a square of side length 2 units. C_(1) is the circle touching all the sides of the square ABCD and C_(2) is the circumcircle of square ABCD. L is a fixed line in the same plane and R is fixed point. If a circle is such that it touches the line L and the circle C_(1) externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is

If C_(1): x^(2)+y^(2) =(3+2sqrt(2))^(2) be a circle. PA and PB are pair of tangents on C_(1) where P is any point on the director circle of C_(1) , then the radius of the smallest circle which touches C_(1) externally and also the two tangents PA and PB is

ARIHANT MATHS-CIRCLE -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let C1and C2 be two circles with C2 lying inside C1 A circle C lying i...

    Text Solution

    |

  2. Find the derivative of (a/x^4 - b/x^2 + cosx)

    Text Solution

    |

  3. If the circles x^2+y^2+2a x+c y+a=0 and points Pa n dQ , then find the...

    Text Solution

    |

  4. A circle touches the x-axis and also touches the circle with center (0...

    Text Solution

    |

  5. Find the derivative of (4x - 2)

    Text Solution

    |

  6. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  7. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  8. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  9. If the lines 3x-4y-7=0 and 2x-3y-5=0 are two diameters of a circle of ...

    Text Solution

    |

  10. Let C be the circle with centre (0, 0) and radius 3 units. The equatio...

    Text Solution

    |

  11. Find the derivative of (ax + b)^n

    Text Solution

    |

  12. Consider a family of circles which are passing through the point (-1,1...

    Text Solution

    |

  13. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  14. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  15. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  16. Consider: L1:2x+3y+p-3=0 L2:2x+3y+p+3=0 where p is a real number and...

    Text Solution

    |

  17. The point diametrically opposite to the point P(1, 0) on the circle x^...

    Text Solution

    |