Home
Class 12
MATHS
Find lim(x to 2)f(x) , where f(x) = 3|x|...

Find `lim_(x to 2)f(x) , where f(x) = 3|x| - 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 3|16 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 4|17 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 1|18 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos

Similar Questions

Explore conceptually related problems

Find lim_(x rarr 5)f(x) , where f(x)=|x|-5

Find lim_(x to 0)f(x) , when f(x) = (5x + 2) .

Find lim_(x rarr 0) f(x) , where f (x) =|x|-5.

Find lim_(x rarr 0)f(x) , where f(x)={(x/(|x|),x ne 0),(0,x=0):}

Find lim_(x rarr 1)f(x) where f(x)= {(x^2-1,xle1),(-x^2-1,x>1):}

Evaluate lim_(x rarr 0)f(x) , where f(x)= {(|x|/x,x ne 0),(0,x=0):}

Find lim_(x rarr 0) f(x) , and lim_(x rarr 1) f(x) , where : f(x)= {(2x+3,",",xle0),(3(x+1),",", x>0.):}

Find lim_(x rarr 0)f(x) and lim_(x rarr 1) f(x) , where f(x)={(2x+3,xle0),(3(x+1),x>0):}

Find k so that : lim_(x rarr 2)f(x) exists, where : f(x)={(2x+3,"," if xle2), (x+3k,"," if x>2.):}

Find k so that : lim_(x rarr 2)f(x) exists, where : f(x)={(2x+3,"," if xle2), (x+2k,"," if x>2.):}