Home
Class 12
MATHS
The distance of a point on the ellipse (...

The distance of a point on the ellipse `(x^2)/6+(y^2)/2=1` from the center is 2. Then the eccentric angle of the point is

A

`pi/4`

B

`(3pi)/4`

C

`(5pi)/4`

D

`(7pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

Find the eccentric angle of a point on the ellipse (x^2)/6+(y^2)/2=1 whose distance from the center of the ellipse is sqrt(5)

The eccentric angle of a point on the ellipse x^(2)/6 + y^(2)/2 = 1 whose distance from the centre of the ellipse is 2, is

If the maximum distance of any point on the ellipse x^2+2y^2+2x y=1 from its center is r , then r is equal to 3+sqrt(3) (b) 2+sqrt(2) (sqrt(2))/(sqrt(3-sqrt(5))) (d) sqrt(2-sqrt(2))

The line 5x-3y=8sqrt2 is a normal to the ellipse x^(2)/25+y^(2)/9=1 , If 'theta' be eccentric angle of the foot of this normal then 'theta' is equal to

The maximum distance of the centre of the ellipse (x^(2))/(16) +(y^(2))/(9) =1 from the chord of contact of mutually perpendicular tangents of the ellipse is

The number of points on the ellipse (x^2)/(50)+(y^2)/(20)=1 from which a pair of perpendicular tangents is drawn to the ellipse (x^2)/(16)+(y^2)/9=1 is 0 (b) 2 (c) 1 (d) 4

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

The distance of the point (2,1,-1) from the plane x-2y+4z=9 is :

Write the equation of tangent to the ellipse (x^2)/(25)+(y^2)/(16)=1 at any point P .