Home
Class 12
MATHS
Let F1,F2 be two focii of the ellipse an...

Let `F1,F_2` be two focii of the ellipse and `PT and PN` be the tangent and the normal respectively to the ellipse at ponit P.then

A

(a)`PN` bisects `angleF_1PF_2`

B

(b)`PT` bisects `angleF_1PF_2`

C

(c)`PT` bisects `angle(180^circ-angleF_1PF_2)`

D

(d)None of above

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q, then the ratio of area of the triangle MQR to area of the quadrilateral MF1NF2 is

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2(1-b^2/d^2) .

A vertical line passing through the point (h, 0) intersects the ellipse x^2/4+y^2/3=1 at the points P and Q .Let the tangents to the ellipse at P and Q meet at R . If Delta (h) Area of triangle DeltaPQR , and Delta_1 = max_(1/2<=h<=1)Delta(h) and Delta_2 = min_(1/2<=h<=1) Delta (h) Then 8/sqrt5 Delta_1-8Delta_2

An ellipse intersects the hyperbola 2x^2-2y =1 orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then (a) the foci of ellipse are (+-1, 0) (b) equation of ellipse is x^2+ 2y^2 =2 (c) the foci of ellipse are (t 2, 0) (d) equation of ellipse is (x^2 2y)

S_1a n dS_2 are the foci of an ellipse of major axis of length 10 units, and P is any point on the ellipse such that the perimeter of triangle P S_1 is 15. Then the eccentricity of the ellipse is 0.5 (b) 0.25 (c) 0.28 (d) 0.75

An ellipse intersects the hyperbola 2x^2- 2y^2 = 1 orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the co-ordinate axes, then :

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg .

Point 'O' is the centre of the ellipse with major axis AB & minor axis CD. Point F is one focus of the ellipse. If OF = 6 & the diameter of the inscribed circle of triangle OCF is 2, then find the product (AB).(CD)

Let the tangent at a point P on the ellipse meet the major axis at B and the ordinate from it meet the major axis at A. If Q is a point on the AP such that AQ=AB , prove that the locus of Q is a hyperbola. Find the asymptotes of this hyperbola.

Show that a tangent to an ellipse whose tangent intercepted by the axes is the shortest, is divided at the point of tangency into two parts respectively, is equal to the semi-axes of the ellipse.