Home
Class 12
MATHS
For all real p, the line 2px+ysqrt(1-p^(...

For all real p, the line `2px+ysqrt(1-p^(2))=1` touches a fixed ellipse whose axex are the coordinate axes
The foci of the ellipse are

A

`(pmsqrt3/2,0)`

B

`(0,pmsqrt3/2)`

C

`(pmsqrt3,0)`

D

`(0,pmsqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Ellipse Exercise 5: Matching Type Questions|3 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

The line 2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The eccentricity of the ellipse is

The line 2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The locus of the point of intersection of prependicular tangents of the ellipse is

An ellipse intersects the hyperbola 2x^2-2y =1 orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then (a) the foci of ellipse are (+-1, 0) (b) equation of ellipse is x^2+ 2y^2 =2 (c) the foci of ellipse are (t 2, 0) (d) equation of ellipse is (x^2 2y)

An ellipse is drawn by taking a diameter of the circle (x-1)^2+y^2=1 as its semi-minor axis and a diameter of the circle x^2+(y-2)^2=4 as its semi-major axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is (1) 4x^2+""y^2=""4 (2) x^2+""4y^2=""8 (3) 4x^2+""y^2=""8 (4) x^2+""4y^2=""16

If the line 3 x +4y =sqrt7 touches the ellipse 3x^2 +4y^2 = 1, then the point of contact is

Find the equation of the circle which touches the coordinate axes and whose centre lies on the line x-2y=3.

The ellipse E_1:(x^2)/9+(y^2)/4=1 is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle Rdot The eccentricity of the ellipse E_2 is (a) (sqrt(2))/2 (b) (sqrt(3))/2 (c) 1/2 (d) 3/4

Find the length of major and minor axes, the the co-ordinates of foci, the vertices of the ellipse 3x^(2)+2y^(2)=18 .

Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/4=1 touching the ellipse at point A and B. Q. The coordinates of A and B are

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2(1-b^2/d^2) .