Home
Class 12
MATHS
The length of the sides of the square wh...

The length of the sides of the square which can be made by four perpendicular tangents to the ellipse `x^2/7+(2y^2)/11=1`, is

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS|Exercise Ellipse Exercise 5: Matching Type Questions|3 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|8 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of two prependicular tangents of the ellipse x^(2)/9+y^(2)/4=1 is

The number of points on the ellipse (x^2)/(50)+(y^2)/(20)=1 from which a pair of perpendicular tangents is drawn to the ellipse (x^2)/(16)+(y^2)/9=1 is 0 (b) 2 (c) 1 (d) 4

Write the equation of tangent to the ellipse (x^2)/(25)+(y^2)/(16)=1 at any point P .

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1.

Find the equations of the tangents to the curve 3x^2 - y^2 = 2 which are perpendicular to the line x + 3y = 2.

Find the points on the curve 4x^2+9y^2=1 ,where the tangents are perpendicular to the line 2y+x=0

If the angle between the asymptotes of hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 is 120^0 and the product of perpendiculars drawn from the foci upon its any tangent is 9, then the locus of the point of intersection of perpendicular tangents of the hyperbola can be x^2+y^2=6 (b) x^2+y^2=9 x^2+y^2=3 (d) x^2+y^2=18

Find the equations of the tangents to the ellipse 3x^(2)+4y^(2)=12 which are perpendicular to the line y+2x=4 .

Find the equation of the tangent to the ellipse (x^2)/a^2+(y^2)/(b^2) = 1 at (x_1y_1)