Home
Class 12
MATHS
If a x+b/xgeqc for all positive x where ...

If `a x+b/xgeqc` for all positive `x` where `a ,\ b ,\ >0` , then `a b<(c^2)/4` (b) `geq(c^2)/4` (c) `a bgeqc/4` (d) none of these

A

`ablt(c^(2))/(4)`

B

`abge(c^(2))/(4)`

C

`abge(c)/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 4|15 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 5|8 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 2|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If a x^2+b/xgeqc for all positive x where a >0 and b >0, show that 27 a b^2geq4c^3dot

If the expression [m x-1+(1//x)] is non-negative for all positive real x , then the minimum value of m must be -1//2 b. 0 c. 1//4 d. 1//2

There exists a positive number k such that log_2x+ log_4x+ log_8x= log_kx , for all positive real no x. If k= a^(1/b) where (a,b) epsilon N, the smallest possible value of (a+b)=

If a and b are positive integers, then you know that a=bq+r, such that r is less than or equal to 0 and r is less than b, where q is a whole number. Prove that HCF(a,b) = HCF(b, r). ​

Let f(x)=sinx+a x+bdot Then which of the following is/are true? (a) f(x)=0 has only one real root which is positive if a >1, b 1, b 1, b > 0. (d) none of these

Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alpha and beta ,where alpha 1 , then show that 1+c/a+|b/a|<0

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . IF D=4(a^(2)-3b)lt0 . Then, a. f(x) has all real roots b. f(x) has one real and two imaginary roots c. f(x) has repeated roots d. None of the above

If the line a x+b y+c=0 is a normal to the curve x y=1, then a >0,b >0 a >0,b >0 (d) a<0,b<0 none of these

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2))=0" where " x_(1),x_(2) are the roots of f(x) , then

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2))gt0 where x_(1),x_(2) are the roots of f(x), then