Home
Class 12
MATHS
Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sin...

Let `f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):}` then

A

x=-2 is the point of global minima

B

x=`pi` is the point of global maxima

C

f(x) is non-differentiable at `x=(pi)/(2)`

D

f(x) is discontinuos at x=0

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|35 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise MAXIMA AND MINIMA EXERCISE 1|1 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

If f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)), (- cos x, -(pi)/(2)lt x ,le 0):} ,( x-1, 0 lt x le 1),("in"x, x gt1):}

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Statement I If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=(3)/(sqrt(1-x^(2))) only when (-1)/(2)lexlt(1)/(2)/. Statement II sin^(-1)(3x-4x^(3)) ={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}

If f(x)={(mx+1" , if "xle(pi)/(2)),(sinx+n" , if "xgt(pi)/(2)):} , is continuous at x= (pi)/(2) , then

Consider f(x)={{:(cosx,0lexlt(pi)/(2)),(((pi)/(2)-x)^(2),(pi)/(2)lexltpi):} such that f is periodic with period pi . Then which of the following is not true?

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

By using properties of definite integrals, evaluate the following: underset0overset9 int f(x)dx where f(x)={(sinx,0lexlepi/2),(1,pi/2lexle3),(e^(x-3),3lexle9):}

ARIHANT MATHS-MONOTONICITY MAXIMA AND MINIMA-Exercise (More Than One Correct Option Type Questions)
  1. Evaluate (8!)/((8 - 2)!)

    Text Solution

    |

  2. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  3. Let S be the set of real values of parameter lamda for which the equat...

    Text Solution

    |

  4. Fill in the Blanks f(x)=x^3-3x^2+3x is strictly increasing in ......

    Text Solution

    |

  5. Let f(x)=log(2x-x^2)+sin((pix)/2)dot Then which of the following is/ar...

    Text Solution

    |

  6. Show that the function f given by f(x) = tan^-1(sinx+cosx), x>0 is alw...

    Text Solution

    |

  7. If the maximum and minimum values of the determinant |(1 + sin^(2)x...

    Text Solution

    |

  8. Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1"...

    Text Solution

    |

  9. Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, where |a|lt1,bgt0 then a. maxi...

    Text Solution

    |

  10. If f(x)=int(x^(m))^(x^(n))(dt)/(lnt),xgt0andngtm, then

    Text Solution

    |

  11. f(x)=sqrt(x-1)+sqrt(2-x) and g(x)=x^(2)+bx+c are two given functions s...

    Text Solution

    |

  12. Find the intervals in which f(x)=6x^2-24x+1 increases and decreases

    Text Solution

    |

  13. Evaluate (10!)/(3! 2! 2!)

    Text Solution

    |

  14. The function f(x)={:{(x+2,ifxlt-1),(x^(2),if-1lexle1),((x-2)^(2),ifxge...

    Text Solution

    |

  15. A function f is defined by f(x)=int(0)^(pi)cos t cos (x-t)dt, 0 lexle2...

    Text Solution

    |

  16. Evaluate (n!)/(r!(n - r)! , when n = 7 , r = 5

    Text Solution

    |

  17. Let f(x) be a differentiable function in the interval (0, 2) then the ...

    Text Solution

    |

  18. Find the value of n , if (2n - 1)/(n - 2) = 3

    Text Solution

    |

  19. Find the value of n , if ((2n)! (n - 3)!)/((2n - 3)! n!) = 11

    Text Solution

    |