Home
Class 12
MATHS
If y(x-y)^2=x, then int1/(x-3y)dx is eq...

If `y(x-y)^2=x`, then `int1/(x-3y)dx` is equal to
(A) `1/3log{(x-y)^2+1}`
(B) `1/4log{(x-y)^2-1}`
(C) `1/2log{(x-y)^2-1}`
(D) `1/6 log{(x^2-y^2-1}`

A

1

B

3

C

5

D

7

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Solved Examples (Matching Type Questions )|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If y=log((1-x^(2))/(1+x^(2))) , then (dy)/(dx) is equal to

IF [log (x^2 + y^2) = 2 tan^-1 (y/x)] then show that , dy/dx = (x+y) /(x- y)

If log sqrt(x^2 + y^2) = tan^-1 (y//x) , then show that dy/dx = (x+y)/(x-y)

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If x^y+y^x= (x+y)^(x+y) , then prove that dy/dx= ((x+y)^(x+y) [1+log(x+y)]-yx^(y-1)-y^xlogy)/(x^ylogx+xy^(x-1) -(x+y)^(x+y) [1+log(x+y)]

If y = x log (x/(a+bx)) , prove that x^3 y _2 = (xy_1 - y)^2

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If y is a function of x and log(x+y)-2x y=0, then the value of y^(prime)(0) is (a)1 (b) -1 (c) 2 (d) 0

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))