Home
Class 12
MATHS
If In=int x^nsqrt(a^2-x^2)dx, prove that...

If `I_n=int x^nsqrt(a^2-x^2)dx,` prove that `I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Solved Examples (Matching Type Questions )|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(1)x(1-x)^(n)dx=1/((n+1)(n+2))

prove: (2^n+2^(n-1))/(2^(n+1)-2^n)=3/2

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

If I_(n)=int("In "x)^(n)dx, " then " I_(n)+nI_(n-1)=

If int (x+sqrt(1+x^(2)))^(n)dx . =(1)/(a(n+1)){x+sqrt(1+x^(2))}^(n+1)+(1)/(-b(n-1)){x+sqrt(1+x^(2))}^(n-1)+C Then (a+b) is equal to

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If y^(2)=ax^(2)+2bx+c and u_(n)= int (x^(n))/(y)dx , prove that (n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y and deduce that au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0) .

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .