Home
Class 12
MATHS
int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4...

`int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`-2/sqrt(2) cos (x/2)+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|24 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that : cos^2 (pi/8+x/2)-sin^2 (pi/8-x/2)= 1/sqrt2 cos x .

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

int_(-pi/4)^(pi/4)sin^(3)xdx=2.

Prove that : sin^2 frac (pi)(8)+ sin^2 frac (3pi)(8)+ sin^2 frac (5pi)(8)+sin^2 frac (7pi)(8)=2 .

Evaluate int_(0)^(pi//4)(e^(secx)[sin(x+(pi)/(4))])/(cosx(1-sin x))dx

Evaluate the following integrals: int_(-pi//4)^(pi//4)sin^(2)x dx

Find the following integrals int_(0)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Prove that : sin^4 frac (pi)(8)+ sin^4 frac (3pi)(8)+sin^4 frac (5pi)(8)+sin^4 frac (7pi)(8)=3/2 .

Evaluate : int _((-pi)/(4))^((pi)/(4)) sin^(2)x dx .