Home
Class 12
MATHS
Let I=int(e^(x))/(e^(4x)+e^(2x)+1)dx, J=...

Let `I=int(e^(x))/(e^(4x)+e^(2x)+1)dx, J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx`.
Then, for an arbitrary constant c, the value of `J-l` equals to

A

`1/2 log |(e^(4x)-e^(2x)+1)/(e^(4x)+e^(2x)+1)|+C`

B

`1/2 log |(e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1)|+C`

C

`1/2 log |(e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1)|+C`

D

`1/2 log |(e^(4x)+e^(2x)+1)/(e^(4x)-e^(2x)+1)|+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int (e^x(1+x))/(cos^2(xe^x))dx .

int (e^(3x)+1)^2 e^(3x)dx

int x^2 e^(-2x) dx