Home
Class 12
MATHS
If tanalpha=m/(m+1)a n dtanbeta=1/(2m+1)...

If `tanalpha=m/(m+1)a n dtanbeta=1/(2m+1)` . Find the possible values of `(alpha+beta)`

Text Solution

Verified by Experts

The correct Answer is:
`pi/4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 8|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha a n d beta are the roots of x^2-3x+2=0 find the value of (1+ alpha )(1+ beta ).

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If the quadratic equation , 4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)- beta + 1/2) = 0 have meal roots, then find all the possible value of cos alpha + cos^(-1) beta .

If the quadratic equation , 4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)- beta + 1/2) = 0 have real roots, then find all the possible value of cos alpha + cos^(-1) beta .

If alpha, beta are the roots of x^2-a(x-1)+b=0 , then the value of 1/(alpha^2- a alpha)+1/(beta^2-b beta)+2/(a+b) is :

Consider the nine digit number n = 7 3 alpha 4 9 6 1 beta 0. The number of possible values of beta for wich i^(N) = 1 ("where " i=sqrt-1) ,

The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the plane of the vectors vec b="" hat"i"+ hat j and vec c= hat j+ hat k and bisects the angle between vec b and vec c . Then which one of the following gives possible values of alpha"and"beta ? (1) alpha=""2,beta=""2 (2) alpha=""1,beta=""2 (3) alpha=""2,beta=""1 (4) alpha=""1,beta=""1

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If a tanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a where a is a constant and alpha,beta and gamma are variable angles. Then the least value of tan^2alpha+tan^2beta+tan^2gamma is equal to

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :