Home
Class 12
MATHS
If alpha+beta=pi/2a n dbeta+gamma=alpha,...

If `alpha+beta=pi/2a n dbeta+gamma=alpha,` then `tanalpha` equals

A

(a) `2(tanbeta+tangamma)`

B

(b) `tanbeta+tangamma`

C

(c) `tanbeta+2tangamma`

D

(d) `2tanbeta+tangamma`

Text Solution

Verified by Experts

The correct Answer is:
`tan beta + 2 tan gamma`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 8|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and tan gamma are in

Statement I The minimum value of the expression sinalpha+sinbeta+singamma where alpha, beta, gamma are real numbers such that alpha+beta+gamma=pi is negative. Statement II If alpha+beta+gamma=pi , then alpha, beta, gamma are the angles of a triangle.

If cos^-1 alpha + cos^-1 beta + cos^-1 gamma = 3 pi , then alpha(beta + gamma) + beta (gamma + alpha) + gamma (alpha + beta) equals

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

Using properties of determinants, prove that: |[alpha,alpha^2,beta+gamma],[beta,beta^2,gamma+alpha],[gamma,gamma^2,alpha+beta]| = (beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

Let alpha,beta,gamma > 0 and alpha+beta+gamma=pi/2. Statement-1: |tan alpha tan beta-(a!)/6|+|tan beta tan gamma-(b!)/2|+|tan gamma tanalpha-(c!)/3| le 0, where n! =1.2..........n, then tan alpha tanbeta,tanbeta tangamma, tan gamma tan alpha=1 Settlement 2 : tan alpha tanbeta+,tanbeta tangamma+, tan gamma tan alpha=1

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2)+gamma^(2)=6 , the number of integers lie in the exhaustive range of alpha is ……… .