Home
Class 12
MATHS
If y=(1+t a n A)(1-t a n B), where A-B=p...

If `y=(1+t a n A)(1-t a n B),` where `A-B=pi/4,` then `(y+1)^(y-1)` is equal to 9 (b) 4 (c) 27 (d) 81

Text Solution

Verified by Experts

The correct Answer is:
27
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 8|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 3t a n At a n B=1, prove that 2cos(A+B)=cos(A-B)dot

The equation of the circle which touches the axes of coordinates and the line x/3+y/4+=1 and whose centres lie in the first quadrant is x^2+y^2-2c x-2c y+c^2=0, where c is equal to 4 (b) 2 (c) 3 (d) 6

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, where x y<0 then the possible values of z is (are) 3 (b) 2 (c) 4 (d) 8

The number of values of c such that the straight line y=4x+c touches the curve (x^2)/4+(y^2)/1=1 is (a) 0 (b) 1 (c) 2 (d) infinite

If x=underset0 overset y int (dt)/sqrt(1+9t^2) and (d^2y)/(dx^2)=ay , then a is equal to

If tan^-1 x + tan^-1 y = (4pi)/5 , then cot^-1 x + cot^-1 y equals

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_1+x)++1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to pi (b) 2pi (c) 3pi (d) pi/2

If x=int_(0)^(y)(dt)/sqrt(1+9t^(2)) and (d^(2)y)/(dx^(2))=ay , then a is equal to

Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+......... is equals to (a). 2^n+n-1 (b). n-1+2^(-n) (c). n+2^(-n)-1 (d). 2^n+1

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)