Home
Class 12
MATHS
If A+B+C=pi , then, find sin 2A+ sin 2...

If `A+B+C=pi` , then, find
`sin 2A+ sin 2B+ sin 2C`.

Answer

Step by step text solution for If A+B+C=pi , then, find sin 2A+ sin 2B+ sin 2C. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(sin A + sin B +sin C)= 8 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C-1)= 8 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

If A + B + C =pi , prove that : (sin A + sin B +sin C)/(sin A + sin B -sin C)= cot frac (A)(2) cot frac (B)(2) .

If A + B + C =pi , prove that : sin A + sin B -sin C = 4 sin frac (A)(2) sin frac (B)(2) cos frac (C)(2) .

If A + B + C =pi , prove that : . sin A + sin B+sinC = 4 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

In any DeltaABC, find sin A+sin B+ sin C.

In a triangle ABC, if a = 18, b = 24 and c = 30, find sin A, sin B and sin C.

If A+B+C=180^(@) , then prove that sin2A+sin2B+sin2C=4 sin A sin B sin C .

If tan A and tan B are the roots of abx^2- c^2x + ab= 0 , where a, b, c are the sides of the tnangle ABC, then the value of sin^2 A + sin^2 B + sin^2 C is :

If A + B + C =pi/2 , prove that : sin^2 A +sin^2 B+sin^2 C= 1-2 sin A sin B sin C .