Home
Class 8
MATHS
If a+b=c, show that a^(3)+b^(3)+3abc=c^(...

If `a+b=c`, show that `a^(3)+b^(3)+3abc=c^(3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

If a,b,c are in A.P,show that (i)a^(3)+b^(3)+6abc=8b^(3)( ii) (a+2b-c)(2b+c-a)(a+c-b)=4abc

If a+b+c=0 then prove that a^(3)+b^(3)+c^(3)=3abc

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

If a=b= 333, c= 334 find a^(3) + b^(3) + c^(3)- 3abc

If a = 500 , b = 502 and c = 504 , then the value of a^(3) + b^(3) + c^(3) - 3abc

If a+b+c=5 and ab+bc+ca=10, then prove that a^(3)+b^(3)+c^(3)-3abc=-25 .