Home
Class 10
MATHS
Value of 1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(...

Value of `1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqrt7+sqrt8)+1/(sqrt8+sqrt9)`

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

1/(sqrt7+sqrt6-sqrt13)=

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))