Home
Class 10
MATHS
If a(1), a(2), a(3),…… , an be in A.P. a...

If `a_(1)`, `a_(2)`, `a_(3)`,…… , an be in A.P. and `a_(i)`, `gt 0` for all `i`, then show that
`(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+…..+(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

If a_(1),a_(2),...,a_(n)>0, then prove that (a_(1))/(a_(2))+(a_(2))/(a_(3))+(a_(3))/(a_(4))+...+(a_(n-1))/(a_(n))+(a_(n))/(a_(1))>n