Home
Class 10
MATHS
If a(1),a(2),a(3),…… an be a(n) A.P. of ...

If `a_(1),a_(2),a_(3),……` an be `a_(n)` A.P. of nonzero terms, prove that `(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+….(1)/(a_(n-1)a_(2))=(n-1)/(a_(1)a_(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

If a_(1),a_(2),...,a_(n) be an A.P. of positive terms, then

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

Suppose a_(1),a_(2),…a_(n) are positive real numbers which are in A.P. If (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+…+(1)/(a_(n)a_(1)) =(lamda)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n)))" (1)" then lamda =

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(400)=50 . Then |a_(1)-a_(4001)| is equal to

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .