Home
Class 10
MATHS
If the roots of the equation a(b-c)x^(2)...

If the roots of the equation `a(b-c)x^(2)+b(c-a)x+c(a-b)=0` are equal , then show tha a, b,c are in H.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

If the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal show that 1/a,1/b,1/c are in A.P.

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal,then prove that 2b=a+c

If the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal,show that 2/b=1/a+1/c.

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal then a,b,c will be in

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

If the roots of the equation a(b - c)x^2 + b(c- a)x+ c(a-b)=0 are equal, then which of the following is true? यदि समीकरण a(b - c)x^2 + b(c- a)x+ c(a-b)=0 के मूल बराबर है, तो निम्नलिखित में से कौन सा सही है?