Home
Class 10
MATHS
which of the two functions are equal ? ...

which of the two functions are equal ?
i) `f(x)=-sqrt(x)+x^(2)-1` and `g(x)=x^(2)-1+sqrt(1-x)-sqrt(x)-sqrt(1-x)`
ii) `h(x)=x^(2)=x` and `u(x)=(x^(3)+x)/(x)`
iii) `v(x)=x^(2)+1-sqrt(x)` and `w(x)=x^(2)+1+sqrt(1-x)-sqrt(x)-sqrt(1-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int((sqrt(x)+1)(x^(2)-sqrt(x)))/(x sqrt(x)+x+sqrt(x))dx

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1)*x then

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

The domain of the function [ f(x)=sqrt(2-x)+sqrt(1+x)" is "]

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x