Home
Class 10
MATHS
Suppose f:[-2,2] to II R is defind by ...

Suppose `f:[-2,2] to II ` R is defind by
`f(x)={{:(-1,, "for",,-2 le x lt 0),(x-1,,"for",, 0le x le 2):}`
then, `{x epsilon[-2,2]: xle0` and f(|x|)=x}`= ….

A

`{0}`

B

`{(1)/(4)}`

C

`{(-3)/(2)}`

D

`{(-1)/(2)}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f (x) = {{:( x,"for" 0le xle 1 ),( 2x -1 ,"for " 1 lt x ):} then

If f(x) = {{:(|x|",", "for",,0 lt |x| le 2), (1",", "for,, x =0):} . Then, at x = 0, f has

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is

Let f(x) be defined on [-2,2] and is given by f(x) = {{:(x+1, - 2le x le 0 ),(x - 1, 0 le x le 2):} , then f (|x|) is defined as

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).