Home
Class 10
MATHS
Let f:R^((+)) to R^((+)) . If [f(xy)]^(2...

Let `f:R^((+)) to R^((+))` . If `[f(xy)]^(2)=x[f(y)]^(2)` for all `x` and `yf(9)=21`, find `f(100)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f((x+y)/(3))=(2+f(x)+f(y))/(3) for all x,yf'(2)=2 then find f(x)

Let f be a function defined from F^(+)rarrR^(+). If (f(xy))^(2)=x(f(y))^(2) for all positive numbers x and y, If f(2)=6, find f(50) =?

Let f be a function defined from R rarr R If [f(xy)]^(2)=x(f(y))^(2) for all positive numbers x and y and f(2)=6 then find f(50)

Let f(x)=x+f(x-1) for AA x in R.If f(0)=1, find f(100)

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,

Let f:R rarr R be a function satisfying condition f(x+y^(3))=f(x)+[f(y)]^(3) for all x,y in R If f'(0)>=0, find f(10)

A real valued function f(x) is satisfying f(x+y)=yf(x)+xf(y)+xy-2 for all x,y in R and f(1)=3, then f(11) is

let f(x) be the polynomial function. It satisfies the equation 2 +f(x)* f(y) = f(x) + f(y) +f(xy) for all x and y. If f(2) =5 find f|f(2)| .

If f:R rArr R such that f(x+y)-kxy=f(x)+2y^(2) for all x,y in R and f(1)=2,f(2)=8 then f(12)-f(6) is

Let f:R rarr R be a function such that |f(x)-f(y)|<=6|x-y|^(2) for all x,y in R. if f(3)=6 then f(6) equals: