Home
Class 10
MATHS
It f(x)=(a-x^(n))^((1)/(n)) where agt0, ...

It `f(x)=(a-x^(n))^((1)/(n))` where `agt0`, and n is a positive integer, then show that `f(f(x))=x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=(a-x^(n))^((1)/(n)), where a>0 and n is a positive integer,then f(f(x))=(i)x^(3)( ii) x^(2)( iii) x( iv )-x

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

Solve (x-1)^(n)=x^(n), where n is a positive integer.

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

If f(x)=(2011 + x)^(n) , where x is a real variable and n is a positive interger, then value of f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -

If f(x)=(a-x^(n))^(1//n),"where a "gt 0" and "n in N , then fof (x) is equal to