Home
Class 10
MATHS
If f(x)=(3x+2)/(5x-3) defined on R-{(3)/...

If `f(x)=(3x+2)/(5x-3)` defined on `R-{(3)/(5)} to R-{(3)/(5)}`, then `f^(-1)(x)` = ….

A

`x`

B

`f(x)`

C

`2f(x)4)`

D

`3f(x)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that if f:R-{(7)/(5)}rarr R-{(3)/(5)} is defined by f(x)=(3x+4)/(5x-7) and g:R-{(3)/(5)}rarr R-{(7)/(5)} is define by g(x)=(7x+4)/(5x-3), then fog=I_(A)A=R-{(3)/(5)},B=R-{(7)/(5)};I_(A)(x)=x,AA x in A,I_(B)(x)=x,AA x in B are called ideal

If f:R-{(7)/(5)}rarr R-{(3)/(5)} be defined as f(x)=(3x+4)/(5x-7) and g:R-{(3)/(5)}rarr R-{(7)/(5)} be defined as g(x)=(7x+4)/(5x-3). Show that gof=I_(A) and fog=I_(B), where B=R-{(3)/(5)} and A=R-{(7)/(5)}

Show that function f:A rarr B defined as f(x)=(3x+4)/(5x-7) where A=R-{7/5}, B=R-{3/5} is invertible and hence find f^(-1) .

If f(x)=(2x)/(5)-3 for all x in R then: f^(-1)(-5)=

If f(x)=x^(3)-5x^(2)+5x+1 then value of f(2-sqrt(3)) is

If f:R-:R be defined by f(x)=(3-x^(3))^(1/3), then find fof(x)

If f(x)=(x^(3)+3x+5)/(x^(3)-3x+2) in [0, 5], then f is

If f" R -{3/5} to R be defined by f(x)=(3x+2)/(5x-3) , then :

Let f:R-{(3)/(5)}rarr R be defined by f(x)=(3x+2)/(5x-3). Then

If f: R to R defined as f(x)=3x+7 , then find f^(-1)(-2)