Home
Class 10
MATHS
If f(m+1)=m(-1)^(m+1)-2f(m) for integers...

If `f(m+1)=m(-1)^(m+1)-2f(m)` for integers `mge1` and `f(1)=f(2001)`, then compute `f(1)+f(2)+…....+f(2000)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)+f(1-x)=2, then f((1)/(2)) is

f(x)+f(1-x)=2 then find f((1)/(2))=

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

If f(x+1/x)=x^2+1/x^2+8 then f(3), f(5), f(-1)

Assume that f(1) = 0 and that for all integers m and n f(m+n) = f(m) + f(n) + 3(4mn-1) then f(19) = मान लें कि f(1)= 0 और कि सभी पूर्णांकों के लिए m और n f(m+n) = f(m)+f(m)+3(4mn-1) फिर f(19)

If f(x)=[mx^(2)+n,x 1. For what integers m and n does both (lim)_(x rarr1)f(x)

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

A Function f is defined for all positive integers and satisfies f(1)=2005 and f(1)+f(2)+.........+f(n)=n^(2)f(n) for all n>1. Find the value of f(2004)

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=