Home
Class 10
MATHS
Which of the two functions are equal ? ...

Which of the two functions are equal ?
1) `f(x)=-sqrt(x)+x^(2)-1 & g(x)=x^(2)-1+sqrt(1-x)-sqrt(x)-sqrt(1-x)`
2) `h(x)=x^(2)=x&u(x)=(x^(3)+x)/(x)`
3) `v(x)=x^(2)+1-sqrt(x)&w(x)=x^(2)+1+sqrt(1-x)-sqrt(x)-sqrt(1-x)`
4) `l(x)=log_((1)/(8xos^(2)x))sinx-(1)/(2)&m(x)sinx-(1)/(sqrt(8cos^(2)x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1)*x then

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=(pi)/(4)+(1)/(2)cos^(-1)x^(2)

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

int_(1)^(5)(sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)))dx =