Home
Class 10
MATHS
Let f:N to N be a function defined recur...

Let `f:N to N` be a function defined recursively `f(1)=1,f(2)=1` and `f(n+1)=f(n)+f(n-1)` for all `nge2`. Find `sum_(n=1)^(oo)(f(n))/(2^(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

Let f : N rarr R be a function such that f(1) + 2f(2) + 3f(3) + ....+nf(n)= n(n+1) f(n) , for n ge 2 and f(1) = 1 then

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

Let f: N to N be defined by f(x) = x-(1)^(x) AA x in N , Then f is

If f(n+1)=(1)/(2){f(n)+(9)/(f(n))},n in N and f(n)>0 for all n in N, then find lim_(n rarr oo)f(n)

Let f:N rarr R and g:N rarr R be two functions and f(1)=08,g(1)=0.6f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g(n+1)=f(n)sin(g(n))+g(n)cos(g(n)) for n>=1.lim_(n rarr oo)f(n) is equal to

If the function f :N to N is defined by f (x)= sqrtx, then (f (25))/(f (16)+ f(1)) is equal to

Let f: N to R be a function satisfying the condition f(1) + f(2) ……………. +f(n) = n^(2) f(n) AA n in N If f(2025) = 1/(2026) , then f(1) = ………….

Let f:N rarr R be a function such that (ii) f(1)+2f(2)+3f(3)+.........+nf(n)=n(n+1)f(n)=n(n+1)f(n)AA n>=2 Then find f(2011)