Home
Class 10
MATHS
From verticqally situated aeroplane to t...

From verticqally situated aeroplane to the straight horizontal road, the angle of depression of two consecutive km stones are a and b. If an aeroplane is in vertival plane in between two stones, then the height of the aeroplane from the road (in kilometers) will be

A

`("tan"alpha"tan"beta)/("tan"alpha+"tan"beta)`

B

`("tan"alpha"tan"beta)/("tan"alpha-"tan"beta)`

C

`("tan"alpha-"tan"beta)/("tan"alpha+"tan"beta)`

D

`("tan"alpha+"tan"beta)/("tan"alpha-"tan"beta)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive kilometre-stones on the opposite sides of the aeroplane are observed to be alpha and beta. The height of the aeroplane above the road is

From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be alpha and beta . The height of the aeroplane above the road is

From an aeroplane vertically above a straight horizontal road,the angles of depression of two consecutive mile stones on opposite sides of the aeroplane are observed to be alpha and beta . Show that the height in miles of aeroplane above the road is give by (tan alpha tan beta)/(tan alpha+tan beta)

From an aeroplane just over a straight road, the angles of depression of two consecutive kilometre is stones situated at opposite sides of the aeroplane were found to be 60^@ and 30^@ respectively. The height (in km) of the aerophlane from the road at that instant was (Given sqrt(3)= 1.732 )

An aeroplane is flying above a horizontal plane. The angle of depression of two consecutive mile stones at plane in opposite directions are respectively alpha and beta . Prove that height of the aeroplane is (tanalphatanbeta)/(tanalpha+tanbeta)

From an aeroplane just over a straight road, the angles of depression of two consecutive kilometer stones situated at opposite sides of the aeroplane were found to be 60^@ and 30^@ respectively. The height (in km) of the aeroplene from the road at that instant, is: एक विमान से ठीक सीधी सड़क पर, विमान की विपरीत दिशाओं में स्थित दो अनुक्रमिक किलोमीटर पत्थरों के अवनमन कोण क्रमशः 60^@ और 30^@ हैं। उस समय विमान की सड़क से ऊँचाई (किमी में) कितनी है?

From an aeroplaneflying,vertically above a horizontal road,the angles of depression of two consecutive stones on the same side of aeroplane are observed to be 30^@ and 60^@ respectively.The height at which the aeroplane is flying in km is

The angle of depression of two consecutive kilometer stones in opposite direction from an aeroplane lying above the horizontal line joining the two stones are respectively 60^(@) and 45^(@) . What is the height of the aeroplane ?

From an aeroplane above a straight road the angle of depression of two positions at a distance 20 m apart on the road are observed to be 30^(@) and 45^(@) . The height of the aeroplane above the ground is :