Home
Class 10
MATHS
The sum of the series 1 + (k)/(3) + (k(k...

The sum of the series `1 + (k)/(3) + (k(k+1))/(3.6) + (k(k+1)(k+2))/(3.6.9) +...` is

A

`((2)/(3))^(4)`

B

`((3)/(2))^(k)`

C

`(2)/(3)`

D

`(3)/(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series sum_(k=1)^(360)((1)/(k sqrt(k+1)+(k+1)sqrt(k)))

[(k (k + 1)) / (2)] ^ (2) + (k + 1) ^ (3) = [((k + 1) (k + 2)) / (2) +1] ^ (2)

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

Sum of the series sum_(k=1)^(oo)sum_(r=0)^(k)(2^(2r))/(7^(k))(""^(k)C_(r)) is:

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

Statement 1 The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+"……."+(361+380+400) is 8000. Statement 2 sum_(k=1)^(n)(k^(3)-(k-1)^(3))=n^(3) for any natural number n.

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Evaluate the sum , sum_(k=1)^(n)(1)/(k(k+1)(k+2)……..(k+r)) .

-1=(6k-3)/(k+1)