Home
Class 10
MATHS
If (1 + 2x + x^(2))^(n) = sum(r=0)^(2n) ...

If `(1 + 2x + x^(2))^(n) = sum_(r=0)^(2n) a_(r)x^(r)`, then `a_(r)` =

A

`(.^(n)C_(r))^(2)`

B

`.^(n)C_(r).^(n)C_(r + 1)`

C

`.^(2n)C_(r)`

D

`.^(2n) C_(r + 1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

If (1-x-x^(2))^(20)=sum_(r=0)^(40)a_(r).x^(r), then

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)

If (1-x^(2))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(2n-r), then a_(r) is equal to ^(n)C_(r) b.^(n)C_(r)3^(r) c.^(2n)C_(r) d.^(n)C_(r)2^(r)

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a_(1)-2a_(2)+3a_(3)-...-2na_(2n)=