Home
Class 10
MATHS
(C(0))/(1)-(C(1))/(2) + (C(2))/(3)-...+(...

`(C_(0))/(1)-(C_(1))/(2) + (C_(2))/(3)-...+((-1)^(n).C_(n))/(n+1) =`

A

0

B

`(1)/(n + 1)`

C

`(2^(n))/(n + 1)`

D

`(2^(n) - 1)/(n + 1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+.........(C_(n))/(n+1)=

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

If C_(0),C_(1),C_(2),...,C_(n) denote the binomial coefficientsin the expansion of (1+x)^(n), then (C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+......+(-1)^(n)(C_(n))/(n+2)=

Prove that (C_(1))/(1)-(C_(2))/(2)+(C_(3))/(3)-(C_(4))/(4)+...+((-1)^(n-1))/(n)C_(n)=1+(1)/(2)+(1)/(3)+...+(1)/(n)