Home
Class 14
MATHS
(723+1992)^2-(723-1992)^2 ÷723 × 1992=?...

`(723+1992)^2-(723-1992)^2 ÷723 × 1992=?`

A

4

B

33

C

6

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression `(723 + 1992)^2 - (723 - 1992)^2 ÷ 723 × 1992`, we will follow these steps: 1. **Identify Variables**: Let \( a = 723 \) and \( b = 1992 \). This simplifies our expression. 2. **Rewrite the Expression**: The expression can be rewritten as: \[ (a + b)^2 - (a - b)^2 \div (a \times b) \] 3. **Apply the Difference of Squares Formula**: We can use the identity \( x^2 - y^2 = (x - y)(x + y) \) where \( x = (a + b) \) and \( y = (a - b) \): \[ (a + b)^2 - (a - b)^2 = [(a + b) - (a - b)][(a + b) + (a - b)] \] Simplifying each part: - \( (a + b) - (a - b) = 2b \) - \( (a + b) + (a - b) = 2a \) Therefore, we have: \[ (a + b)^2 - (a - b)^2 = 2b \cdot 2a = 4ab \] 4. **Substitute Back into the Expression**: Now substitute \( 4ab \) back into the expression: \[ 4ab \div (ab) \] 5. **Simplify the Expression**: The \( ab \) in the numerator and denominator cancels out: \[ 4ab \div ab = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(999)^(2)-(998)^(2)=?1992(b)1995(c)1997 (d) 1998

Show that 1992^(1998) - 1955^(1998) - 1938^(1998) + 1901^(1998) is divisible by 1998

(8)^(2) % "of" = 723+45

Evaluate (72.3)^((1)/(3)) if log0.723=1.8591

Evaluate (72.3)^((1)/(3)); if log0.723=bar(1).8591

detdet [[1990,1991,19921991,1992,19931992,1993,1994]] =

[ The difference between the local value and face value of 6 in the numeral 586723 is: [ a) 723, b) 6717, c) 5994, d) None of these ]]

Write the characteristics of the following no. by using the standard forms (i) 1235.5 (ii) 62.723 (iii) 0.034239