Home
Class 14
MATHS
Which of the following statements is/are...

Which of the following statements is/are false.
i. `(a+b)^2 = a^2+b^2+2ab`
ii. `(a+b)^2-(a-b)^2=4ab`
iii. `(a+b)^2+(a-b)^2=2(a^2+b^2)`
iv. `(a-b)^2 = a^2-b^2+2ab`
v. `(a-b)^2 = a^2+b^2`

A

iv and v only

B

v only

C

ii and iv only

D

iii and I only

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given statements is/are false, we will evaluate each statement one by one using algebraic identities. 1. **Statement i**: \((a+b)^2 = a^2 + b^2 + 2ab\) This is a well-known algebraic identity known as the square of a binomial. **Verification**: \[ (a+b)^2 = (a+b)(a+b) = a^2 + ab + ab + b^2 = a^2 + b^2 + 2ab \] **Conclusion**: This statement is **true**. **Hint**: Remember the formula for the square of a binomial. 2. **Statement ii**: \((a+b)^2 - (a-b)^2 = 4ab\) We will expand both squares and simplify. **Verification**: \[ (a+b)^2 = a^2 + b^2 + 2ab \] \[ (a-b)^2 = a^2 + b^2 - 2ab \] Now, substituting these into the equation: \[ (a+b)^2 - (a-b)^2 = (a^2 + b^2 + 2ab) - (a^2 + b^2 - 2ab) \] Simplifying: \[ = a^2 + b^2 + 2ab - a^2 - b^2 + 2ab = 4ab \] **Conclusion**: This statement is **true**. **Hint**: Use the difference of squares to simplify. 3. **Statement iii**: \((a+b)^2 + (a-b)^2 = 2(a^2 + b^2)\) We will again expand both squares and simplify. **Verification**: \[ (a+b)^2 = a^2 + b^2 + 2ab \] \[ (a-b)^2 = a^2 + b^2 - 2ab \] Now, substituting these into the equation: \[ (a+b)^2 + (a-b)^2 = (a^2 + b^2 + 2ab) + (a^2 + b^2 - 2ab) \] Simplifying: \[ = a^2 + b^2 + 2ab + a^2 + b^2 - 2ab = 2a^2 + 2b^2 = 2(a^2 + b^2) \] **Conclusion**: This statement is **true**. **Hint**: Combine like terms carefully. 4. **Statement iv**: \((a-b)^2 = a^2 - b^2 + 2ab\) We will expand the left side. **Verification**: \[ (a-b)^2 = a^2 - 2ab + b^2 \] The right side is \(a^2 - b^2 + 2ab\). Clearly, these two expressions are not equal. **Conclusion**: This statement is **false**. **Hint**: Remember that the square of a difference includes a negative sign with the \(2ab\) term. 5. **Statement v**: \((a-b)^2 = a^2 + b^2\) We will expand the left side. **Verification**: \[ (a-b)^2 = a^2 - 2ab + b^2 \] The right side is \(a^2 + b^2\). Again, these two expressions are not equal. **Conclusion**: This statement is **false**. **Hint**: Check the expansion of the square carefully. ### Final Conclusion: The false statements are **iv** and **v**.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(a^2+b^2+2ab)-(a^2+b^2-2ab)

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

What is the HCF of a^2b^4+2a^2b^2 and (ab)^7 - 4a^2b^9

Simplify (a - b) (a ^(2) + b ^(2) + ab) - (a +b) (a ^(2) +b ^(2) - ab)

(a ^ (2) -b ^ (2)) / (ab) - (a ^ (3) -b ^ (3)) / (a ^ (2) -b ^ (2))

Some Important Identities - (i) (a+b)^(2)=a62+2ab+b^(2)( ii) (a-b)^(2)=a^(2)-2ab+b^(2)