Home
Class 14
MATHS
The last two digits of 37^2 is....

The last two digits of `37^2` is.

A

69

B

39

C

49

D

79

Text Solution

AI Generated Solution

The correct Answer is:
To find the last two digits of \( 37^2 \), we can use the identity for the square of a binomial. Here’s a step-by-step solution: ### Step 1: Rewrite the expression We can express \( 37 \) as \( 40 - 3 \). Therefore, we can rewrite \( 37^2 \) as: \[ (40 - 3)^2 \] ### Step 2: Apply the binomial square formula Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \), where \( a = 40 \) and \( b = 3 \): \[ (40 - 3)^2 = 40^2 - 2 \cdot 40 \cdot 3 + 3^2 \] ### Step 3: Calculate each term Now, we calculate each term: - \( 40^2 = 1600 \) - \( 2 \cdot 40 \cdot 3 = 240 \) - \( 3^2 = 9 \) ### Step 4: Combine the results Substituting these values back into the equation gives us: \[ 37^2 = 1600 - 240 + 9 \] ### Step 5: Perform the arithmetic Now, we perform the arithmetic: \[ 1600 - 240 = 1360 \] \[ 1360 + 9 = 1369 \] ### Step 6: Find the last two digits The last two digits of \( 1369 \) are \( 69 \). ### Final Answer Thus, the last two digits of \( 37^2 \) are \( 69 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The last two digits of 3^(400) is

16. The last two digit of 3^1997 is 1) 63 2) 24 3) 56 4) 36 28. LEVEL

Find the last two digits of 64^(236) .

Find the last two digits of 56^(283) .

Find the last two digits of 78^(379) .

Find the last two digits of 2^(543) .

Find the last two digits of 64^(586) .

Find the last two digits of 54^(380) .