Home
Class 12
MATHS
Len N be set of natural numbers. For n...

Len N be set of natural numbers. For `n in N` defiine
`I_(n)=int_(0)^(pi) (x sin^(2n)(x))/(sin^(2n)(x)+cos^(2n)(x)) dx`.
Then for `m,n in N`

A

`I_m lt I_n` for all `m lt n`

B

`I_m gt I_n ` for all `m lt n`

C

`I_m = I_n` for all `m ne n`

D

` I_m lt I_n ` for some ` m le n ` and `I_m gt I_n ` for some `m lt n`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2020

    KVPY PREVIOUS YEAR|Exercise PART-I (MATHEMATICS)|20 Videos
  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-II ( MATHEMATICS)|10 Videos
  • SOLVED PAPER 2018

    KVPY PREVIOUS YEAR|Exercise EXAMPLE|27 Videos

Similar Questions

Explore conceptually related problems

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

int_(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0 , is equal to

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

For any n in N,int_(0)^( pi)(sin^(2)(nx))/(sin^(2)x)dx is equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to