Home
Class 12
MATHS
The value of the integral int(1)^(sqr...

The value of the integral
` int_(1)^(sqrt(2) +1) ((x^2 -1)/(x^2+1)) (1)/(sqrt(1 +x^4)) dx ` is

A

`(pi )/( 6 sqrt(2))`

B

`(pi)/(12 sqrt(2))`

C

`(pi)/(8 sqrt(2))`

D

`(pi)/(4 sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{\sqrt{2} + 1} \frac{x^2 - 1}{x^2 + 1} \cdot \frac{1}{\sqrt{1 + x^4}} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand as follows: \[ I = \int_{1}^{\sqrt{2} + 1} \frac{x^2 - 1}{x^2 + 1} \cdot \frac{1}{\sqrt{1 + x^4}} \, dx. \] ### Step 2: Divide numerator and denominator by \(x^2\) We divide the numerator and denominator by \(x^2\): \[ I = \int_{1}^{\sqrt{2} + 1} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} \cdot \frac{1}{\sqrt{\frac{1}{x^4} + 1}} \, dx. \] ### Step 3: Change of variables Let \(u = x + \frac{1}{x}\). Then, we differentiate to find \(dx\): \[ du = \left(1 - \frac{1}{x^2}\right) dx. \] ### Step 4: Change the limits of integration When \(x = 1\), \(u = 1 + 1 = 2\). When \(x = \sqrt{2} + 1\), we compute: \[ u = \sqrt{2} + 1 + \frac{1}{\sqrt{2} + 1} = \sqrt{2} + 1 + \sqrt{2} - 1 = 2\sqrt{2}. \] ### Step 5: Substitute in the integral Now, we can express the integral in terms of \(u\): \[ I = \int_{2}^{2\sqrt{2}} \frac{1}{\sqrt{u^2 - 2}} \cdot \frac{1}{\sqrt{u^2 - 2}} \, du = \int_{2}^{2\sqrt{2}} \frac{1}{u^2 - 2} \, du. \] ### Step 6: Evaluate the integral This integral can be computed using the formula: \[ \int \frac{1}{u^2 - a^2} \, du = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C. \] In our case, \(a = \sqrt{2}\): \[ I = \frac{1}{2\sqrt{2}} \left[ \ln \left| \frac{u - \sqrt{2}}{u + \sqrt{2}} \right| \right]_{2}^{2\sqrt{2}}. \] ### Step 7: Substitute the limits Calculating the limits: 1. For \(u = 2\): \[ \frac{2 - \sqrt{2}}{2 + \sqrt{2}}. \] 2. For \(u = 2\sqrt{2}\): \[ \frac{2\sqrt{2} - \sqrt{2}}{2\sqrt{2} + \sqrt{2}} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}. \] ### Step 8: Final calculation Now we can compute: \[ I = \frac{1}{2\sqrt{2}} \left( \ln \left| \frac{1}{3} \right| - \ln \left| \frac{2 - \sqrt{2}}{2 + \sqrt{2}} \right| \right). \] ### Final Result After simplifying, we find: \[ I = \frac{\pi}{12\sqrt{2}}. \] Thus, the value of the integral is \[ \boxed{\frac{\pi}{12\sqrt{2}}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2020

    KVPY PREVIOUS YEAR|Exercise PART-I (MATHEMATICS)|20 Videos
  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-II ( MATHEMATICS)|10 Videos
  • SOLVED PAPER 2018

    KVPY PREVIOUS YEAR|Exercise EXAMPLE|27 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(0)^(1) (sqrt(x)dx)/((1+x) (1+3x ) (3+x)) is :

The value of integral int_(-1)^(1)(|x+2|)/(x+2) dx is

The value of integral int_(-1)^(1) (|x+2|)/(x+2)dx is

int(x^(2)-1)/(x sqrt(1+x^(4)))dx

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(0)^((1)/(2))(1+sqrt(3))/(((x+1)^(2)(1-x)^(6))^((1)/(4)))dx is

Evaluate the integral : int(sqrt(x)+(1)/(sqrt(x)))^(2)dx