Home
Class 12
MATHS
Let x, y, z be non-zero real numbers suc...

Let x, y, z be non-zero real numbers such that `x/y + y/z + z/x = 7 `and `y/x + z/y + x/z = 9 , ` then `(x^3)/y^3 + y^3/z^3 + z^3/x^3 - 3` is equal to

A

152

B

153

C

154

D

155

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((x^3/y^3 + y^3/z^3 + z^3/x^3 - 3)\) given the equations: 1. \(\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 7\) 2. \(\frac{y}{x} + \frac{z}{y} + \frac{x}{z} = 9\) Let's denote: - \(a = \frac{x}{y}\) - \(b = \frac{y}{z}\) - \(c = \frac{z}{x}\) From the definitions, we have: - \(abc = \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{x} = 1\) Now we can rewrite the given equations in terms of \(a\), \(b\), and \(c\): 1. \(a + b + c = 7\) 2. \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 9\) We can rewrite the second equation as: \[ \frac{bc + ca + ab}{abc} = 9 \implies bc + ca + ab = 9 \cdot 1 = 9 \] Now we have the following system of equations: 1. \(a + b + c = 7\) 2. \(ab + bc + ca = 9\) We need to find \(a^3 + b^3 + c^3 - 3\). Using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)((a + b + c)^2 - 3(ab + ac + bc)) \] Substituting the known values: - \(a + b + c = 7\) - \(ab + ac + bc = 9\) - \(abc = 1\) Now we compute: \[ a^3 + b^3 + c^3 - 3 = (a + b + c)((a + b + c)^2 - 3(ab + ac + bc)) + 3abc - 3 \] Calculating \((a + b + c)^2\): \[ (7)^2 = 49 \] Now substituting into the identity: \[ a^3 + b^3 + c^3 - 3 = 7(49 - 3 \cdot 9) + 3 \cdot 1 - 3 \] \[ = 7(49 - 27) + 3 - 3 \] \[ = 7(22) + 0 \] \[ = 154 \] Thus, the final answer is: \[ \boxed{154} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-II (MATHEMATICS)|5 Videos
  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-I ( MATHEMATICS)|20 Videos
  • MOCK TEST 9

    KVPY PREVIOUS YEAR|Exercise EXERCISE|25 Videos
  • QUESTION PAPER 2020

    KVPY PREVIOUS YEAR|Exercise PART-II(MATHEMATICS)|10 Videos

Similar Questions

Explore conceptually related problems

Let x,y,z be positive real numbers such that x+y+z=12 and x^(3)y^(4)z^(5)=(0.1)(600)^(3) Then x^(3)+y^(3)+z^(3) is

Let x,y and z be real numbers such that x+y+z=20 and x+2y+3z=16 .What is the value of x+3y+5z?

If x + y + z = 0 , then what is (y+z-x)^(3) + (z+x-y)^(3) + (x+y-z)^(3) equal to ?

If x, y and z are three non-zero numbers such that x + y le z -x, y + z le x -y and z + x le y -z , the maximum value of x + y + z is __________.

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

Let A=[(x,y,z),(y,z,x),(z,x,y)] , where x, y and z are real numbers such that x + y + z > 0 and xyz = 2 . If A^(2) = I_(3) , then the value of x^(3)+y^(3)+z^(3) is__________.