Home
Class 12
MATHS
The angles alpha , beta , gamma of a tr...

The angles `alpha , beta , gamma ` of a triangle satisfy the equations `2 sin alpha + 3 cos beta = 3sqrt(2)` and `3sin beta + 2cos alpha = 1`. Then angle `gamma` equals

A

`150^(@)`

B

`120^(@)`

C

`60^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations involving the angles of a triangle, α, β, and γ: 1. \( 2 \sin \alpha + 3 \cos \beta = 3\sqrt{2} \) (Equation 1) 2. \( 3 \sin \beta + 2 \cos \alpha = 1 \) (Equation 2) We need to find the value of angle γ. ### Step 1: Square both equations and add them We start by squaring both equations and adding them together. - Squaring Equation 1: \[ (2 \sin \alpha + 3 \cos \beta)^2 = (3\sqrt{2})^2 \] Expanding this, we get: \[ 4 \sin^2 \alpha + 12 \sin \alpha \cos \beta + 9 \cos^2 \beta = 18 \] - Squaring Equation 2: \[ (3 \sin \beta + 2 \cos \alpha)^2 = 1^2 \] Expanding this, we get: \[ 9 \sin^2 \beta + 12 \sin \beta \cos \alpha + 4 \cos^2 \alpha = 1 \] ### Step 2: Combine the equations Now, we add the two expanded equations: \[ (4 \sin^2 \alpha + 9 \cos^2 \beta + 12 \sin \alpha \cos \beta) + (9 \sin^2 \beta + 4 \cos^2 \alpha + 12 \sin \beta \cos \alpha) = 18 + 1 \] This simplifies to: \[ 4 \sin^2 \alpha + 9 \sin^2 \beta + 4 \cos^2 \alpha + 9 \cos^2 \beta + 12 (\sin \alpha \cos \beta + \sin \beta \cos \alpha) = 19 \] ### Step 3: Use trigonometric identities Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 4(1 - \cos^2 \alpha) + 9(1 - \cos^2 \beta) + 12 \sin(\alpha + \beta) = 19 \] This simplifies to: \[ 4 + 9 - 4 \cos^2 \alpha - 9 \cos^2 \beta + 12 \sin(\alpha + \beta) = 19 \] Thus: \[ -4 \cos^2 \alpha - 9 \cos^2 \beta + 12 \sin(\alpha + \beta) = 6 \] ### Step 4: Solve for \( \sin(\alpha + \beta) \) Rearranging gives: \[ 12 \sin(\alpha + \beta) = 6 + 4 \cos^2 \alpha + 9 \cos^2 \beta \] Now we can express \( \sin(\alpha + \beta) \) in terms of \( \alpha \) and \( \beta \). ### Step 5: Find \( \sin \gamma \) Since \( \alpha + \beta + \gamma = 180^\circ \), we have: \[ \sin(\alpha + \beta) = \sin(180^\circ - \gamma) = \sin \gamma \] Thus: \[ \sin \gamma = \frac{1}{2} \] ### Step 6: Determine \( \gamma \) The angles for which \( \sin \gamma = \frac{1}{2} \) are: \[ \gamma = 30^\circ \quad \text{or} \quad \gamma = 150^\circ \] However, since \( \alpha + \beta + \gamma = 180^\circ \) and α and β must be positive angles, we conclude: \[ \gamma = 30^\circ \] ### Final Answer Thus, the value of angle γ is \( \boxed{30^\circ} \).
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-II ( MATHEMATICS)|10 Videos
  • QUESTION PAPER 2013

    KVPY PREVIOUS YEAR|Exercise PART-II (MATHEMATICS)|5 Videos
  • MOCK TEST 9

    KVPY PREVIOUS YEAR|Exercise EXERCISE|25 Videos
  • QUESTION PAPER 2020

    KVPY PREVIOUS YEAR|Exercise PART-II(MATHEMATICS)|10 Videos

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

If alpha and beta satisfying the equation sin alpha+sin beta=sqrt(3)(cos alpha-cos beta), then

If alpha,beta and gamma are acute angled such that sin alpha = sqrt3/2 cos beta = sqrt3/2and tan gamma = 1 , then what is alpha+ beta + gamma equal to ?

If alpha,beta ,gamma are direction angles of a line , then cos 2alpha + cos 2beta + cos 2 gamma =

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

KVPY PREVIOUS YEAR-QUESTION PAPER 2013-PART-I ( MATHEMATICS)
  1. The sum of non-real roots of the polynomial equation x^3 + 3x^2+3x + 3...

    Text Solution

    |

  2. Let n be a positive integer such that log2 log 2 log2 log2 log2 (n) lt...

    Text Solution

    |

  3. Let omega be a cube root of unity not equal to 1. Then the maximum pos...

    Text Solution

    |

  4. If a, b are positive real numbers such that the lines ax + 9y = 5 and ...

    Text Solution

    |

  5. Two line segments AB and CD are constrained to move along the x and y ...

    Text Solution

    |

  6. Consider a triangle ABC in the xy -plane with vertices A = (0,0), B = ...

    Text Solution

    |

  7. Let ABC be an acute-angled triangle and let D be the midpoint of BC. I...

    Text Solution

    |

  8. The angles alpha , beta , gamma of a triangle satisfy the equations 2...

    Text Solution

    |

  9. Let f : R to R be a function such that lim(x to oo) f(x) = M gt 0. T...

    Text Solution

    |

  10. For x , t in R let p(t) (x)= ( sin t) x^(2) - (2 cost ) x + sin ...

    Text Solution

    |

  11. Let f(x) = sqrt(2-x-x^(2)) and g(x) = cos x . Which of the following ...

    Text Solution

    |

  12. For real x with -10 le x le 10 define f(x) = int(-10)^(x) 2^([t]) dt...

    Text Solution

    |

  13. For a real number x let [x] denote the largest integer less than or eq...

    Text Solution

    |

  14. The area bounded by the curve y = cos x, the line joining (-pi //4 , c...

    Text Solution

    |

  15. A box contains coupons labeled 1, 2, 3....n. A coupon is picked at ran...

    Text Solution

    |

  16. Let n ge 3. A list of numbers 0 le x1 le x2 le … le xn has mean mu a...

    Text Solution

    |

  17. Let vec(v1) , vec(v2) , vec(v3), vec(v4) be unit vectors in the xy-pl...

    Text Solution

    |

  18. The number of integers n with 100 le n le 999 and containing at most t...

    Text Solution

    |

  19. For an integer n let Sn = {n + 1, n + 2, ....., n + 18}. Which of the ...

    Text Solution

    |

  20. Let P be a closed polygon with 10 sides and 10 vertices (assume that t...

    Text Solution

    |