Home
Class 11
MATHS
Prove thatsqrt((1+sinx)/(1-sinx))=secx+t...

Prove that`sqrt((1+sinx)/(1-sinx))=secx+tanx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1-sinx) dx =

(d)/(dx)[log(sqrt((1+sinx)/(1-sinx)))]=

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot A normal to y=f(x) at x=pi/6 also passes through the point:

int(sinx)/(sinx-cosx)dx=

intcosx/((1+sinx)(2+sinx))dx

Prove that (cosecx-sinx)(secx-cosx)(tanx+cotx)=1